If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+56x+52=0
a = 8; b = 56; c = +52;
Δ = b2-4ac
Δ = 562-4·8·52
Δ = 1472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1472}=\sqrt{64*23}=\sqrt{64}*\sqrt{23}=8\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-8\sqrt{23}}{2*8}=\frac{-56-8\sqrt{23}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+8\sqrt{23}}{2*8}=\frac{-56+8\sqrt{23}}{16} $
| -7b=35+14= | | 9k-8=16 | | 3(x-5)=2(x+5) | | 3x+2(2x-1)=6 | | 3^x+2×9^5x-1=243 | | 48=9c+8c-c | | 5+8x—6x=3x+9–3x | | 7-5(x+1)=4-2(x+4) | | -1+14x+13x+17=180 | | -k-2(k+1)=-16-5k | | 7i-2=61 | | Y=-5/2x+8 | | 13.8y+262.6=28 | | 8a+69a+10=304 | | 6^(8-x)=(1)/(216) | | (X+3)-4=46-2x | | 1/2x+3=2/3x=+1 | | 3(2x-3)-x=6 | | -x-5*3=2x+18 | | q–3=7 | | A(n)=7+(n‒1)(3) | | 57=19^x | | 62-10x=6x-6 | | -5(1+1x=-50 | | 9-2(3t-13)=-7 | | 4x1=-3+2x | | (5+4x)-12=40 | | 45-10x=6x+6 | | 2x+4(x-2)=40 | | b+(2b+13)=76 | | x+120+100+95+85=540 | | 0=1/8x+5 |